範囲のある比例のグラフと反比例

前回は「比例のグラフ」について学んでいきました。
今回はその応用と、新しい「反比例」というものについて学んでいきます。

4-5 比例のグラフで範囲のあるもの

今回の範囲があるものとはどういうことかというと、始めと終わりが存在するということです。
例えば、12Lの容器に毎分2Lずつ水を入れるとすると、容器には最初0Lから始まり、12Lで満タンとなり終了です。そして、時間も0分から始まり、6分で終わります。

このような時には変域という言葉を使い、不等号で表現します。
例えば、容器の水をyL、時間をx分とすると、
0x6
0y12
とそれぞれ表すことができます。

例題6

駅から山小屋までの全長12kmのハイキングコースを時速4kmで歩くことにした。
現在、スタート地点の駅にいて、x時間後に駅からykmの地点にいるとき、次の問いに答えなさい。
(1)yをxを使って表せ。
(2)x,yの変域をそれぞれ求めよ。
(3)x,yの関係をグラフで表せ。

(1)距離=速さ×時間なので、
y=4xとなる。簡単ですね。

(2)早速出てきました、変域。始まりと終わりでしたね。
0x3
0y12

(3)最後にグラフです。(2)で求めた変域の場所だけになるので、下図のようになります。これが、範囲のある比例のグラフです。

確認問題60

ノート1ページに底辺の長さがxcm、高さが1cm、面積がycm²の三角形を1つかく。ただし、ノート1ページのかくことのできる範囲は、縦、横ともに13cmの正方形とする。次の問いに答えよ。
(1)yをxを使って表せ。
(2)xの変域を求めよ。
(3)x,yの関係をグラフで表せ。
(4)yの変域を求めよ。

4-6 反比例

この節からは反比例を学んでいきます。
反比例とは、xが2倍、3倍…になれば、yが1/2倍、1/3倍となる関係のことを言います。

例えば、1人で行うと6時間かかる作業を、2人で行うと3時間で済みますよね。
これをx人で、y時間かかるとすると下表のようになります。

人数(x人)1236
作業時間(y時間)6321

このとき、xとyの関係は
xy=6,y=6xと表すことができます。

このように反比例の式はxy=a,y=axと表すことができます。
a比例定数と呼ぶのは変わりません。

それでは確認問題に挑戦して終わりにしましょう!

確認問題61

次のうち、x,yが反比例の関係になっているものをすべて挙げ、その比例定数を答えよ。
(1)xy=7
(2)x2y=9
(3)x+y=5
(4)y=2x

いかがでしたでしょうか?
次回は「反比例のグラフ」を学んでいきます!
それでは、また次回でお会いしましょう( ^_^)/~~~

確認問題の答え

確認問題60

(1)y=12x
(2)0<x13
(3)下図
(4)0<y132

確認問題61

(1)と(4)が反比例の関係である。
(1)の比例定数は7
(4)の比例定数は2

コメント

タイトルとURLをコピーしました